Math 4300 - Homework \# 4 Betweenness

1. In the Euclidean plane, let $A=(-1,-2), B=(2,1)$, and $C=(0,-1)$.
(a) Determine if A, B, C are collinear or not. Draw a picture.
(b) If the points are collinear, Determine if $A-B-C, A-C-B$, or $B-A-C$.
(c) Determine if $B-C-A$.
2. In the hyperbolic plane, let $A=(1,2), B=(3,4)$ and $C=(4, \sqrt{19})$.
(a) Determine if A, B, C are collinear or not. Draw a picture.
(b) If the points are collinear, Determine if $A-B-C, A-C-B$, or $B-A-C$.
(c) Determine if $B-C-A$.
3. In the hyperbolic plane, let $A=(1,2), B=(1,4)$ and $C=(1,5)$.
(a) Determine if A, B, C are collinear or not. Draw a picture.
(b) If the points are collinear, Determine if $A-B-C, A-C-B$, or $B-A-C$.
4. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let $A, B \in \mathscr{P}$ with $A \neq B$.

Let $C \in \overleftrightarrow{A B}$. Prove that one and only one of the following can be true: $C-A-B$ or $C=A$ or $A-C-B$ or $C=B$ or $A-B-C$.
5. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let ℓ be a line and A, B, C be distinct points on ℓ. Prove that either $A-B-C$ or $A-C-B$ or $B-A-C$.
6. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A, B, C, D be points from \mathscr{P}. Prove that if $A-B-C$ and $B-C-D$, then $A-B-D$ and $A-C-D$.
7. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A, B, C, D be points from \mathscr{P}. Assume that $D \neq B$. Prove that if $A-C-D$ and $A-C-B$, then $A-D-B$ or $A-B-D$.
8. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A, B, C, D be points from \mathscr{P}. Prove that if $A-D-C$ and $A-C-B$, then $A-D-B$.
9. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A, B, P, Q be points from \mathscr{P}. Prove that if $A-Q-B$ and $A-P-B$ and $P-C-Q$, then $A-C-B$.
10. Consider the Euclidean plane $\mathscr{E}=\left(\mathbb{R}^{2}, \mathscr{L}_{E}, d_{E}\right)$. Let $A, B, C \in \mathbb{R}^{2}$ be distinct points. Prove that $A-B-C$ if and only if there exists a real number t with $0<t<1$ and $B=A+t(C-A)$.

